If ∫02πdx2+sin4x=λ∫0π/2dx3+cos2x then λ equals
64
16
8
32
I =∫02πdx2+sin4x Applying king, I =∫02πdx2−sin4x ⇒ 2I = 4∫02πdx4−sin24x Put 4x = t ⇒ 2I =44∫08πdt4−sin2t=∫08πdt3+cos2t ∴ 2I =∫08πdx3+cos2x ↓periodicwithperiod π= 8∫0πdx3+cos2x I = 4∫0πdx3+cos2x ⇒ I = 8∫0π/2dx3+cos2x
Please subscribe our Youtube channel to unlock this solution.